
- 1 - 

 

Calculational and Conceptual Orientations in Teaching 
Mathematics†  

 

Alba G. Thompson 
Randolph A. Philipp 

Patrick W. Thompson 

Center for Research in Mathematics and Science 

Education 
San Diego State University 

 

Barbara A. Boyd 

Cuyamaca Community College 

Running Head: Calculational and conceptual orientations 

 
Thompson, A. G., Philipp, R. A., Thompson, P. W., & Boyd, 

B. A. (1994). Calculational and conceptual orientations in 
teaching mathematics. In A. Coxford (Ed.), 1994 Yearbook 
of the NCTM (pp. 79-92). Reston, VA: NCTM. 

                                                
† Research reported in this paper was supported by National Science 
Foundation Grants No. MDR 89-50311 and 90-96275, and by a grant of 
equipment from Apple Computer, Inc., Office of External Research. Any 
conclusions or recommendations stated here are those of the authors and do 
not necessarily reflect official positions of NSF or Apple Computer. 
Send correspondence to Alba G. Thompson, CRMSE, SDSU, 6475 
Alvarado Rd. #206, San Diego, CA 92120. Telephone (619) 594-2362. 



Calculational and conceptual orientations 
 

- 1 - 

Calculational and Conceptual Orientations in Teaching 
Mathematics 

How mathematics curriculum reform is implemented in the 

classroom depends largely on the images teachers’ have of the 

mathematics they are teaching (Bauersfeld, 1980; Cooney, 1985; 

Thompson, 1984). From our close collaboration with middle school 

mathematics teachers, we have become increasingly aware of the 

pervasive influence teachers’ images have on how they implement 

innovative curricula. We have observed that these images manifest 

themselves in two sharply contrasting orientations towards 

mathematics teaching. We refer to these orientations as calculational 

and conceptual. To illustrate what we mean by a calculational and a 

conceptual orientation in teaching mathematics, we start with two 

vignettes. After the vignettes we give more general discussions of 

what these orientations entail, their implications for classroom 

discourse and students’ learning. The chapter ends with a discussion 

of obstacles to adopting a conceptual orientation and a discussion of 

the implications these obstacles have for the professional preparation 

and development of mathematics teachers. 

The vignettes depict two different teachers, each illustrative 

of an orientation. Our intent is to give the reader concrete examples 

of the kind of teaching, specifically the nature of the classroom 

discourse, that is characteristic of each orientation. The vignettes 

have been constructed from videotaped observations of actual 

lessons. 

Vignette 1 
A seventh grade teacher presented the following problem to 

his class: 

 At some time in the future John 
will be 38 years old. At that time 
he will be three times as old as 
Sally. Sally is now 7 years old. 
How old is John now? 

After allowing students time to think about the problem and 

to discuss their thinking with a classmate, the teacher calls for 

volunteers to explain how they thought about the problem in order to 

solve it. What follows are the responses offered by the students and 

the ensuing exchange between teacher and students: 

T: Let’s talk about this problem a bit. How is it that you thought 
about it? 

S1: I divided 38 by 3 and I got 12 2/3. Then I subtracted 7 from 12 
2/3 and got 5 2/3. (Pause) Then I subtracted that from 38 and 
got 32 1/3. (Pause) John is 32 1/3. 

T: That’s good! (Pause) Can you explain what you did in more 
detail? Why did you divide 38 by 3? 

S1: (Appearing puzzled by the question, looks back at her work. 
She looks again at the original problem) Because I knew that 
John is older. . . three times older. 

T: O.K. And then what did you do? 

S1: Then I subtracted 7 and got 5 2/3. (Pause) I took that away 
from 38 and that gave me 32 1/3. 
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T: Why did you take 5 2/3 away from 38? 

S1: (Pause) To find out how old John is. 

T: O.K. And you got 32 1/3 for John’s age. That’s good! (Pause) 
Yes, S2? 

S2: Isn’t the answer 21? (Pause) I multiplied 7 times 3 and I got 
21.  

T: Hum? Not quite. (Pause) How come you multiplied 7 times 3?  

S2: It says that he is 3 times as old as Sally. . . (Pause) and Sally is 
7. 

T: Oh, I see! (Pause) You’re right, the problem says that John is 
3 times as old as Sally, but that is when John is 38. That’s at 
the time he is 38 which is at some time in the future. (Pause) 
Do you understand? 

S2: Sort of. 

 T: O.K. How about you, S3? How did you think about it? 

S3: I divided 38 by 3 and I subtracted that from 38. That’s 25 and 
something. Then I added that to 7. I got the same thing as S1, 
32 something. 

T: But you did it differently. Super! See? There are different 
ways to solve the same problem. (Pause) How about you S4? 

S4: I subtracted 7 from 38, and divided that by 3. (Pause) I got 10 
something. Then I added that to 7. (Pause) I got that he is 17 
and something. 

T: Hum? That doesn’t quite agree with the other answers, does it? 
I’m not sure I understand what you’re doing. (Pause) Why did 
you subtract 7 from 38? 

S4: (Shrugging his shoulders) I don’t know. 

T: S5? 

S5: Dividing 38 by 3 can’t be right! It doesn’t come out even. 

T: That doesn’t matter, does it? We still get a number, don’t we? 
(Pause) We get that Sally is 12 2/3. (Pause) Let’s take a look 
at how to divide 38 by 3. Divide 3 into 38. (Motioning with his 
hands in the air as if he were doing the long division on an 

imaginary chalkboard.) Three goes into 38 ten times, put up 
the 1, and 10 times 3 is 30. Thirty-eight minus 30 is 8. Three 
goes into 8 two times. Put up the 2, and 2 times 3 is 6. So 8 
minus 6 is 2. The answer is 12 remainder 2, or 12 and two 
thirds. O.K? (Pause) Let’s take a look at the two ways the 
problem was solved.  

The teacher proceeds to demonstrate S1’s and S3’s solutions 

on the board and refers to both solutions as appropriate ways to think 

about the problem. The segment of the lesson ends and the class 

moves to work on another task. 

Contrast the vignette given above with the one below, which 

illustrates an exchange of a very different nature between a teacher 

and his students. This exchange followed the presentation of the 

same problem as in Vignette 1 to a group of seventh graders. Again, 

the exchange takes place after the students have had the opportunity 

to think about the problem and to discuss it with a classmate. 

Vignette 2 
T: Let’s talk about this problem a bit. How is it that you thought 

about the information in it? 

S1: Well, you gotta start by dividing 38 by 3. Then you take away. 
. . 

T: (Interrupting) Wait! Before going on to tell us about the 
calculations you did, explain to us why you did what you did. 
(Pause) What were you trying to find? 

S1: Well, you know that John is three times as old as Sally, so you 
divide 38 by 3 to find out how old Sally is. 

T: Do you all agree with S1’s thinking? 

 Several students say “Yes,” others nod their heads. 
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S2: That’s not gonna tell you how old Sally is now. It’ll tell you 
how old Sally is when John is 38. 

T: Is that what you had in mind, S1? 

S1: Yes.  

T: (To the rest of the class) What does the 38 stand for? 

S2: John’s age in the future. 

T: So 38 is not how old John is now. It’s how old John will be in 
the future. (Pause) The problem says that when John gets to be 
38 he will be 3 times as old as Sally. Does that mean “3 times 
as old as Sally is now” or “3 times as old as Sally will be when 
John is 38?” 

 Several students respond in unison “when John is 38.” 

T: Are we all clear on S2’s reasoning? (Pause)  

S3: I started the same way, but I got stuck dividing. (Pause) 3 
doesn’t go into 38 evenly. (Pause)  

T: Don’t worry about how to divide 38 by 3 now. That’s not 
what’s most important right now. What are you trying to find 
by dividing 38 by 3? 

S3: Sally’s age. 

T: Sally’s age when John is 38 years old. (Pause) You can use 
your calculator if you want to. (Pause) If you try it, you’ll get 
12.66... years. That’s Sally’s age in the future. (Pause) S4? 

S4: Couldn’t you just say John is 21? (Pause) Couldn’t you just 
multiply 3 times 7? 

T: What will that give you? 

S4: 21! 

T: Yes, I know that. But what would the 21 represent? What is it 
that’s 21? 

S4: That’s how old John is now. Isn’t that what we want to find? 

S5: No! (Pause) I mean, yes! That’s what we want to find but 
that’s not right! 

T: What is it that is not right, S4? We do want to find out how old 
John is now, don’t we? 

S5: Right. But see, he’s not three times older than Sally NOW! 
He’ll be 3 times older than Sally when he is 38. So you can’t 
multiply 7 by 3. 

T: Let’s think about that. If we know that John will be 3 times as 
old as Sally when he is 38, does that make him 3 times as old 
as Sally now?(Pause) S4, what do you think? 

S4:  I guess not. (Pause)  

T: (To S4) Suppose you’re now 12 and your younger sister or 
brother is 6 years old. That makes you twice as old as your 
younger sister. Will that also be true next year? (Pause) Next 
year you’ll be 13 and she’ll be 7. Will you still be twice as old 
as your sister? 

S6: Actually, that’ll happen only once and never again. 

S4: I see it. 

T: OK. So how are we going to use the information that John will 
be 3 times as old as Sally when he gets to be 38? (Pause) Who 
can explain? 

S1: You can divide 38 by 3 and get 12.66.... 

T: Remember to tell us what your numbers stand for. What does 
the 12.66....stand for? 

S2: That’s how old Sally will be. 

T: When?  

 Several students respond “When John is 38.” 

T: O.K. We know how old Sally will be when John is 38 years 
old. (Pause) She will be 12.66... years. We can say she’ll be 
12, because we usually don’t say that we are 12.66.... years 
old. We typically use whole numbers when we talk about our 
age. O.K? 

S6: O.K. You can say that Sally will be 12. So, if you subtract 7 
from that you get 5. Then you take away 5 from 38 and you’re 
done! John is 33. 
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T: Wait a minute! You’re going too fast. I don’t see how you 
know to do all that. Can you explain your reasoning? 

S6: (Patiently) You know Sally will be 12 and something, and you 
know that she is 7 now. So that means that there are 5 years 
between now and then. Actually a little more than 5 years, but 
you said that was OK.  

T: Yes, it’s OK to say 5 years. So, 5 years is how much time 
there is between now and the time in the future when John is 
38? 

S6: Yes. So if you take 5 away from 38 that’s how old John is 
now. 

T: Did everyone follow S6’s reasoning? (Pause) Who can recap 
the solution we’ve just been through? 

 The teacher calls on two volunteers who, with some assistance 
from other classmates and the teacher, summarize the 
discussion. 

T: Did anyone think about the problem differently? (Pause) S7? 

S7: Well, sort of. I started out the same. I divided 38 by 3. 

T: (Interrupting) To find what? 

S7: Sally’s age in the future. 

T: OK.  

S7: I got that Sally will be 12 2/3 years old when John is 38. Then 
I subtracted to find the difference between their ages. (Pause) I 
got 25 1/3. 

T: 25 1/3 what? 

S7: 25 1/3 years. That’s how much older John is. (Pause)  

T: How much older than Sally?  

S7: Yes. That’s the difference between their ages.  

T: Now or when John is 38? 

S7: Actually it doesn’t matter. The difference between their ages 
will always be the same. 

T: O.K. We can come back to that thought in a minute. (Pause) 
Go on. 

S7: So to find out how old John is now . . . See, you know Sally is 
now 7 and John is 25 1/3 years older than Sally. So add 25 1/3 
to 7 and you get John’s age. That’s 32 1/3 (Pause) That’s how 
I figured it. 

T:  Who agrees with S7’s reasoning? 

 Several hands go up. 

S8: I don’t understand why she added 25 1/3. 

S2: Because that’s how much older John is than Sally. 

S8: I still don’t see why she added that to 7. 

S2: If you know Sally is 7, and John is 25 1/3 years older than 
Sally, you add to get how old John is now. 

S8: (Puzzled) But 25 1/3 is when John is 38 and Sally is 12 2/3. 

S9: The difference between their ages is always the same, now and 
when John is 38. 

T: Does that make sense to everyone? (Pause)   Who can explain 
S7’s solution method from the beginning? (Pause) Don’t just 
tell me what operations she did. Remember, “to explain” 
means that you have to talk about her reasoning, not just the 
arithmetic she did. 

The discussion continues. The teacher poses more questions 

aimed at focusing students’ attention on the quantities and 

quantitative relationships in the problem. He probes for the reasoning 

underlying the students’ arithmetic procedures. As the teacher elicits 

responses from the students he sketches a diagram (shown below) to 

support the discussion of invariance of age differences and variance 

of age ratios. 
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NOW FUTURE!Elapsed time!

(? years)

ratio

!(1:3)!

!Sally's age then!

(? years)

!John's age then!

(38 years)

difference

!(? years)!

ratio

!(NOT 

1:3)!

!Sally's age now

(7 years)

!John's age now

(? years)

difference

!(? years)!

 

About the Vignettes and the Teachers: Similarities and 
Differences 

We constructed the vignettes from actual classroom 

observations to capture as concretely as possible what we have 

observed to be important differences in mathematics classroom 

discourse. Despite their obvious similarities, there are important 

substantive differences between the two vignettes. Although both 

teachers opened their lessons with the same problem and with similar 

instructions, the ensuing discussions were quite different. They 

differed not only in superficial, albeit important, features such as 

duration and number of students involved.1 They differed markedly 

in what was discussed and in the roles the teachers played. 

                                                
1  The discussion of the problem in the first vignette was much briefer than 
in the second vignette, and vignette 1 overtly involved 5 students while 9 
students contributed to the discussion in vignette 2. 

In both vignettes students’ initially offered sequences of 

arithmetic procedures as expressions of their thinking. However, in 

Vignette 2 students began to give explanations that were grounded in 

conceptions of the situation. In contrast, the explanations given by 

students in Vignette 1 remained strictly procedural; they were all 

statements of how they calculated John’s age, and they all failed to 

address what the teacher ostensibly requested— an explanation of 

how they thought about the problem. Vignette 1 students did not 

offer a justification for the chosen operations that was grounded in 

conceptions of the situation; when explaining they did not connect 

their calculations to ideas of time, duration, aging, or relationships 

among them. Theirs were “calculational” explanations, which stand 

in sharp contrast to the conceptual explanations given in Vignette 2.  

Both teachers pressed their students to give rationales for 

their calculational solutions, but they did so differently and with 

quite different results. When compared to the explanations elicited 

by Teacher 2, the explanations obtained by Teacher 1 were shallow 

and incomplete.2 Teacher 1 was less persistent than Teacher 2 in 

probing the students’ thinking. He accepted solutions consisting of 

calculational sequences if they were correct by some criteria which 

he did not make explicit to the students. Teacher 2, in contrast, 

persistently probed students’ thinking whenever their responses were 

                                                
2  Recall the student who justified dividing 38 by 3 by saying that John is 
older than Sally. 
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cast in terms of numbers and operations, thus steering the discussion 

and focusing students’ attention on how they were conceiving the 

situation. His students were more inclined to comment on each 

others’ contributions than were Teacher 1’s students.  

Another important difference between the teachers was in 

their responses to students’ difficulties with dividing 38 by 3. 

Teacher 1 used the opportunity as an occasion to review the long 

division algorithm; Teacher 2 steered the students’ attention away 

from the computational difficulty, downplaying its significance and 

redirecting their attention toward the quantitative relationship that 

suggested division.  

The actions of the two teachers were driven by different 

images of their pedagogical tasks and of the goals they served. 

Teacher 1’s image was that there was a problem to be solved. 

Teacher 2’s image was of an occasion for students to reason and to 

reflect on their reasoning. Although it might be argued that for both 

teachers the general goal was the long-term development of students’ 

problem solving skills, it is clear that for Teacher 2 that development 

entailed getting the students skilled at reasoning. Furthermore, 

Teacher 2 had an image of what is involved in becoming a skilled 

reasoner, which he obviously had translated into specific pedagogical 

practices. His actions appeared to be driven by the belief that it is not 

until students make their reasoning explicit to themselves that they 

can reflect on it and represent it mathematically; and that it is those 

representations that empower their reasoning. The distinctions 

between these teachers’ actions reside in their orientations toward 

mathematics and teaching mathematics. The teacher in Vignette 1 

exemplifies what we call a calculational orientation. The teacher in 

Vignette 2 exemplifies what we call a conceptual orientation. 

In the remainder of this paper we focus on these two 

orientations from a more theoretical perspective. First, we 

characterize the two orientations. Next we address the consequences 

of each orientation in terms of the teachers’ instructional practices, 

the students’ learning and beliefs, and the nature of the classroom 

discourse. We conclude with a discussion of obstacles to adopting a 

conceptual orientation and some remarks about what might be 

involved in doing so successfully. 

Two Contrasting Orientations 

We believe that the substantive differences in the way the 

teachers handled the curricular task in the vignettes are an expression 

of a fundamental difference in their orientations toward mathematics 

teaching. As mentioned above, we refer to these as conceptual and 

calculational orientations. Here is how we characterize them. 

A teacher with a conceptual orientation is one whose actions 

are driven by: 

- an image of a system of ideas and ways of thinking that 
she intends the students to develop, 

- an image of how these ideas and ways of thinking can 
develop, 
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- ideas about features of materials, activities, 
expositions, and students’ engagement with them that 
can orient students’ attention in productive ways3, 

- an expectation and insistence that students be 
intellectually engaged in tasks and activities. 

Conceptually-oriented teachers often express the images 

described above in ways that focus students’ attention away from 

thoughtless application of procedures and toward a rich conception 

of situations, ideas and relationships among ideas. These teachers 

strive for conceptual coherence, both in their pedagogical actions and 

in students conceptions. As a result, conceptually-oriented teachers 

tend to focus on aspects of situations that, when well understood, 

give meaning to numerical values and which are suggestive of 

numerical operations (Thompson, 1993). Conceptually-oriented 

teachers often ask questions that move students to view their 

arithmetic in a non-calculational context, like: 

- “(This number) is a number of what?” 
- “To what does (this number) refer in the situation 

we’re dealing with?” 
- “What are you trying to find when you do this 

calculation (in regard to the situation as you currently 
understand it)?” 

- “What did this calculation give you (in regard to the 
situation as you currently understand it)?” 

                                                
3A productive way of thinking is one that is generative of a “method” that 
generalizes to other situations. 

A teacher with a calculational orientation is one whose 

actions are driven by a fundamental image of mathematics as the 

application of calculations and procedures for deriving numerical 

results. This does not mean that such a teacher is focused only on 

computational procedures.4 Rather, his is a more inclusive view of 

mathematics, but still one focused on procedures—computational or 

otherwise—for “getting answers.” 

Some symptoms of a calculational orientation are: 

- A tendency to speak exclusively in the language of 
numbers and numerical operations. 

- A predisposition to cast solving a problem as 
producing a numerical solution. 

- An emphasis on identifying and performing 
procedures. 

- A tendency to doing calculations whenever an 
occasion to calculate presents itself, regardless of the 
overall context in which the occasion occurs. 

- A tendency to disregard the context in which the 
calculations might occur, and how they might arise 
naturally from an understanding of the situation itself. 

                                                
4 This view we call a “computational orientation.” A teacher with a 
computational orientation views mathematics as composed of computational 
procedures, and doing mathematics as computing in the absence of any 
reason for the computation aside from the context of having been asked to 
do so. A computational orientation implies a calculational orientation but a 
calculational orientation does not imply a computational orientation. 
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- An inclination to remediate students’ difficulties with 
calculational procedures independently of the context 
in which the difficulties manifest themselves. 

- A tendency to treat problem solving as flat —nothing 
about problem solving is any more or less important 
than anything else, except that the answer is most 
important, because getting it is why you are solving the 
problem. 

- A narrow view of mathematical patterns as limited to 
finding patterns in numerical sequences and across 
problems in terms of sameness of operations. (This as 
opposed to finding patterns in one’s reasoning in the 
solution of problems.) 

Consequences of calculational and conceptual orientations 

Calculational and conceptual orientations can have different 

consequences for the actual interchanges that occur in classrooms 

(Wertsch & Toma, in press). These consequences can be organized 

around the interplay between teachers and students according to 

which orientations each possesses, and the interplay among students 

possessing different orientations. We will focus on the influence of 

teachers’ orientations on classroom discourse, because we believe 

that teachers set the tone for the kinds of discussions in which 

students engage, whether with the teacher or among themselves 

(Cohen, 1990; Porter, 1989; Thompson & Thompson, 1994). 

The teachers’ goals and images described in the previous 

section account for many of the differences between the two 

vignettes. The first teacher’s goal was for students to solve the 

problem and share their procedures; the second teacher 's goal was to 

provide an occasion for students to reason and to make their 

reasoning public. Subtle, but important differences in the teachers’ 

behaviors were an expression of their different goals. 

In the previous section we described the teachers’ 

pedagogical tasks. The teacher in Vignette 1 expected his students to 

explain their procedures; the teacher in Vignette 2 expected students 

to explain their reasoning. One manifestation of the teachers’ goals is 

the type of questions they asked. For example, both teachers asked 

S1 why she had decided to divide 38 by 3. The second teacher also 

asked S1, "What were you trying to find when you divided 38 by 3?" 

By asking this question, the teacher oriented his students toward the 

situation itself and their conception of it, which required the students 

to reflect upon their understanding of the situation. It is an important 

feature of Vignette 2 that the teacher persisted in bringing students 

back to thinking about their conceptions of the situation. This is in 

contrast to orienting students to reflect on their calculations, and it is 

in contrast to allowing students to remain oriented toward their 

calculations. 

Students also have varying degrees of conceptual or 

calculational orientations to mathematics. Those who have adapted to 

calculationally-oriented instruction will approach mathematical 

discussions with the expectation that they will be about getting 

answers  (Cobb, Yackel, & Wood, 1989; Nicholls, Cobb, Yackel, 

Wood, & Wheatley, 1990). Students who have come to view 
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mathematics as answer-getting will not only have difficulty focusing 

on their and others’ reasoning, they may also consider such a focus 

as being irrelevant to their images of what mathematics is about. 

On the other hand, students who have adopted a conceptual 

orientation will likely engage in longer, more meaningful discussions 

(Cobb, Wood, & Yackel, 1991). Vignette 2 lasted longer and 

involved more students than Vignette 1 because students had 

something to discuss. Students in Vignette 1 did not sustain a 

substantive discussion because they had no way of knowing the 

sources of their classmates’ procedures. Reasoning was not a subject 

to discuss. Students in Vignette 2, through the support of their 

teacher, did discuss their reasoning, and, in so doing, created an 

environment in which they felt free to share their understandings.  

A calculationally-oriented teacher may believe that 

explaining the calculations one has performed is tantamount to 

explaining one's reasoning (Cobb, Wood, & Yackel, in press). It is 

our observation that the only students able to follow a calculational 

explanation are those who understood the problem in the first place, 

and understood it in such a way that the proposed sequence of 

operations fits their conceptualization of the problem. To illustrate 

this observation, imagine four students, Alicia, Betty, Carl, and Don, 

all of whom solved the “Sally and John” problem incorrectly. 

Furthermore, imagine that their errors stemmed from different 

sources. Alicia missed the problem because she committed a 

calculational error, but her understanding of the problem was valid, 

and she understood the problem in a way that fit the calculational 

explanation offered by S1. Betty missed the problem because of a 

calculational error, her understanding of the problem was valid, but 

her understanding of the problem did not fit the string of calculations 

offered by S1. Carl and Don missed the problem because they could 

not conceptualize it; Don possesses a calculational orientation and 

Carl possesses a conceptual orientation. The four students are 

listening to the discussion between S1 and T1:  

S1: I divided 38 by 3 and I got 12 2/3. Then I subtracted 7 from 12 
2/3 and got 5 2/3. Then I subtracted that from 38 and got 32 
1/3. John is 32 1/3.  

T1: That's good! (Pause) Can you explain what you did in more 
detail? Why did you divide 38 by 3? 

S1: (Appearing puzzled by the question, looks back at her work. 
She looks again at the original problem.) Because I knew that 
John is older...three times older. 

T1: O.K. And then what did you do? 

S1: Then I subtracted 7 and got 5 2/3. (Pause) I took that away 
from 38 and that gave me 32 1/3. 

T1: Why did you take 5 2/3 away from 38? 

S1: (Pause) To find out how old John is. 

T1: O.K. And you got 32 1/3 for John's age. That's good! 

For Alicia, who had made a calculational error but 

understood the problem in a way that fits S1’s string of operations, 

this explanation validates her solution attempt, leaving her with the 

sense that she now understands what she had actually understood all 

along. Betty is convinced that she does not understand the problem at 

all—her initial answer was incorrect and S1’s string of operations do 
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not fit with the way she conceived the problem. Don thinks he now 

understands, since he was able to follow all of S1’s calculations. 

Don’s ability to perform all the calculations may even give him the 

confidence to explain S1’s solution to Carl, who complains that he 

does not understand. However, Don's procedural explanation only 

leaves Carl even more frustrated, since he finds Don’s explanation 

incomprehensible. For Carl, these explanations do not tell him why 

the calculations were performed. In fact, with all the Dons in the 

class nodding as if they now understand, Carl may feel that there is 

something wrong with his ability to understand mathematics, when 

in fact the only thing wrong is that his expectations for understanding 

are greater than those of his peers. Over time, a conceptually-

oriented student such as Carl, sitting in a classroom dominated by 

calculationally-oriented discourse, may conclude that mathematics is 

not supposed to make sense. Eventually, he may altogether stop 

trying to understand mathematics. 

Obstacles and Implications 

To us it is evident that a conceptual orientation is by far the 

more enriching and the more productive for students and for 

teachers. But it is not an orientation that can be created easily, and 

once created, easily maintained (Romberg & Price, 1981; von 

Glasersfeld, 1988; Wood, Cobb, & Yackel, 1991). To create a 

conceptual orientation one must reflect long and deeply on one’s 

goals and images of mathematics and mathematics teaching. It has 

been our personal experience that there are periods of confusion 

about what we are trying to have our students understand, and 

teachers working with us have expressed the same feelings. When we 

move our focus of instruction to deep conceptualizations of 

situations, we also move away from the domains of discourse with 

which we feel most comfortable—established methods for deriving 

numerical solutions. Instead, we move toward domains of discourse 

that emphasize “how you think about it,” domains few of us have 

explored and too few students have experienced. 

One of the major obstacles to creating a conceptual 

orientation is one’s lack of ideas about how to move pedagogically 

from holding conversations about “how you think about it” to the 

standard mathematics of conventional curriculum. Teachers 

frequently ask us, essentially, this question: “After we’ve talked 

about understanding these situations, how do I introduce the standard 

procedures?” This question indicates to us a teacher who is grappling 

with a dilemma—how to reconcile an emphasis on students’ 

reasoning with the traditional curriculum and pedagogy wherein 

symbols, methods, and procedures are introduced before students 

encounter any substantive applications. A conceptual approach to 

teaching mathematics aims for students to solve problems by 

working from a deep understanding of them. But working from an 

understanding means that they work from their understandings.  

A primary aim of conceptually-oriented teaching is that 

students come to conceive a conceptual domain by developing 

methods for solving problems in it. Part of students’ developing 
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stable, general methods is that they deal with the matter of 

expressing those methods in notation. Once students have developed 

conceptual methods and have reflected those methods in notation 

they can then appreciate that conventional methods are but one way 

to solve problems in a conceptual domain.  

It is important that students also appreciate that the most 

powerful approach to solving problems is to understand them deeply 

and proceed from the basis of understanding, and that a weak 

approach is to search one’s memory for the “right” procedure. A 

teacher’s dilemma regarding when to introduce conventional 

procedures is eventually resolved when this teacher realizes that 

there is no reconciliation possible—the traditional curriculum turns 

the construction of mathematical meaning upside down. The 

resolution of the dilemma comes from the teacher’s creation of a new 

philosophy—a philosophy of what he or she is trying to attain, a 

philosophy that permeates his or her instructional goals and actions 

(Ball, 1993). 

Once a teacher makes a commitment to treat mathematics 

conceptually, she loses support structures upon which she has come 

to rely, such as textbooks and repertoires of stable practices. This is a 

major obstacle to change. Old habits die hard and new practices 

evolve slowly. For most teachers who lack the time and energy to 

rethink their curriculum and pedagogy, the thought of giving up 

conventional materials can be very unsettling. Our research suggests 

that having a repository of rich problems is enough to begin moving 

away from the textbook. Our research also suggests that this is not 

sufficient to ensure success—a conceptual understanding of the 

subject matter the problems address is also necessary for teachers to 

feel they have a sense of direction and to be able to respond to 

students’ difficulties. 

To teach mathematics conceptually it is not sufficient to 

know how to solve the problem with which the students may be 

grappling, nor is it sufficient to know several solution methods 

(McDiarmid, Ball, & Anderson, 1989). To teach conceptually 

requires that one have a deep understanding of the situation. This, in 

turn, requires that one think beyond what is necessary merely to find 

ways of dealing with a situation mathematically. Furthermore, to be 

able to orient students’ thinking in productive ways, it is extremely 

helpful to have an image of students’ thinking as they develop these 

ideas. Any teacher can begin building this image by encouraging 

students to reason and express themselves accordingly, by listening 

to their reasoning, respecting it, and asking students to do likewise. 
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